K21U 1131

Reg. No. :	
110g. 140	
Name :	

IV Semester B.Sc. Degree CBCSS (OBE) Regular Examination, April 2021 (2019 Admission Only)

COMPLEMENTARY ELECTIVE COURSE IN MATHEMATICS 4C04MAT – BCA: Mathematics for BCA – IV

Time: 3 Hours Max. Marks: 40

PART – A (Short Answer)

Answer any 4 questions. 1 mark each :

- 1. What is the probability of getting a sum of 7 when two dice are thrown?
- 2. Define a surplus variable in a linear programming problem.
- 3. Number of edges in a tree with n vertices.
- 4. Define a spanning tree.
- 5. Give the Simpson's $\frac{1}{3}^{rd}$ rule for numerical integration.

 $(4 \times 1 = 4)$

PART – B (Short Essay)

Answer any 7 questions. 2 marks each :

- 6. Two dice are thrown simultaneously. What is the probability of getting two numbers whose product is even?
- 7. A bag contains 20 balls, 3 are coloured red, 6 are coloured green, 4 are coloured blue, 2 are coloured white and 5 are coloured yellow. One ball is selected at random. Find the probability that the ball selected is either red or white or blue.

8. Given an LP Problem

Maximise
$$z = 3x_1 + 5x_2$$

subject to the constraints $x_1 \le 5$

$$x_2 \le 7$$

 $3x_1 + 2x_2 \le 25$

$$x_1, x_2 \ge 0$$

Convert it to the canonical form.

- 9. Define optimum basic feasible solution of a Linear Programming Problem.
- 10. Vitamin C and K are found in two different foods A₁ and A₂. One unit of food A₁ contains 4 units of vitamin C and 10 units of vitamin K. One unit of food A₂, contains 8 units of vitamin C and 4 units of vitamin K. One unit of food A₁ and A₂ cost Rs 60 and Rs. 50 respectively. The minimum daily requirements (for an individual) of vitamin C and K is 80 and 100 units respectively. Assuming that anything in excess of daily minimum requirements of Vitamin C and K is not harmful. Find out the optimal mixture of food A₁ and A₂ at the minimum cost which meets the daily minimum requirements of vitamin C and K. Formulate this as a linear programming problem.
- Find the dual of the following LPP

$$Minimise z = x_1 - x_2 - x_3$$

Subject to the constraints
$$-3x_1 - x_2 + x_3 \le 3$$

$$2x_1 - 3x_2 - 2x_3 \ge 4$$

$$x_1 - x_3 = 2$$

$$x_1, x_2 \ge 0$$

 Draw the network diagram for the project whose activities and their precedence relationship are given below.

Activity	Α	В	С	D	E	F	G	Н	1
Predecessors	= 5	Α	Α		D	B, C, E	F	Е	G, H

 Find the maximum flow from source to sink from the data given below where node s is the source, node t is the sink and (i, j) represents the capacity of the directed arc from i to j

Directed arc	Capacity
(s, 1)	4
(s, 4)	2
(1, 2)	4
(1, 3)	2
(2, t)	3
(3, 2)	1
(3, t)	1
(4, 3)	1
(4, t)	3

- 14. Use Euler's method to compute y(0.02) in the equation $\frac{dy}{dx} = x^3 + y$, y(0) = 1, h = 0.01.
- 15. $y' = x y^2$, y(0) = 1. Find y(0.1) correct to four decimal places using Taylor's series method. (7×2=14)

Answer any 4 questions. 3 marks each :

16. A survey was taken in 30 classes of a school to find the total number of lefthanded students in each class. The table below shows the results:

No. of left-handed students	0	1	2	3	4	5
Frequency (no. of classes)	1	2	5	12	8	2

A class was selected at random.

- a) Find the probability that the class has 2 left-handed students.
- b) What is the probability that the class has at least 3 left-handed students?
- c) Given that the total number of students in the 30 classes is 960, find the probability that a student randomly chosen from these 30 classes is lefthanded.

- 17. In a single throw of two dice, what is the probability that neither a double nor a sum of 9 will appear?
- 18. Use Simplex method to maximise $z = 5x_1 + 3x_2$ Subject to the constraints $x_1 + x_2 \le 2$ $5x_1 + 2x_2 \le 10$ $3x_1 + 8x_2 \le 12$ $x_1, x_2 \ge 0$
- 19. Solve the following problem graphically Maximise $z = 60x_1 + 40x_2$ Subject to the constraints $2x_1 + x_2 \le 60$ $x_1 \le 25$ $x_2 \le 35$ $x_1, x_2 \ge 0$
- Find the minimum spanning tree in the following undirected graph where arc(A, B) is denoted as the arc connecting A and B

ARC	WEIGHT
(A, B)	5
(A, C)	6
(C, E)	5
(A, D)	4
(B, C)	1
(B, D)	2
(C, D)	2
(D, F)	4
(C, F)	3
(E, F)	4

- 21. Use Simpson's rule with n = 6 to estimate the integral $\int_{0}^{1} \sqrt{1+x^3} \, dx$ correct to four decimal places.
- 22. Determine y(0.1) from the differential equation y'' xy' y = 0, y(0) = 1, $\dot{y}'(0) = 0$ by Taylor's method. (4×3=12)

PART – D (Long Essay)

Answer any 2 questions. 5 marks each :

- In a class, there are 15 boys and 10 girls. Three students are selected at random.
 Find the probability that 1 girl and 2 boys are selected.
- 24. Solve using graphical method Maximise $z = 8000 x_1 + 7000 x_2$ Subject to the constraints $3x_1 + x_2 \le 66$ $x_1 \le 20$ $x_2 \le 40$ $x_1 + x_2 \le 45$ $x_1, x_2 \ge 0$
- 25. Find the maximum flow in the directed graph from a to b whose directed arcs and capacities are given below as a table where (i, j) denotes as the directed arc from i to i.

Directed arc	Capacity
(a, 1)	3
(a, 2)	2
(a, 3)	1
(1, 4)	1
(1, 5)	4
(1, 6)	2
(2, 4)	2
(2, 6)	1
(3, 5)	1
(3, 6)	1
(4, b)	0
(4, 3)	2
(5, b)	5
(6, b)	2
(5, 2)	1

26.
$$\frac{d\dot{y}}{dx} = 1 + y^2$$
, $y(0) = 0$. Find $y(0.2)$ and $y(0.4)$ by fourth order Runge-Kutta method. (2×5=10)